Identification of penumbra and infarct in acute ischemic stroke using computed tomography perfusion-derived blood flow and blood volume measurements.
نویسندگان
چکیده
BACKGROUND AND PURPOSE We investigated whether computed tomography (CT) perfusion-derived cerebral blood flow (CBF) and cerebral blood volume (CBV) could be used to differentiate between penumbra and infarcted gray matter in a limited, exploratory sample of acute stroke patients. METHODS Thirty patients underwent a noncontrast CT (NCCT), CT angiography (CTA), and CT perfusion (CTP) scan within 7 hours of stroke onset, NCCT and CTA at 24 hours, and NCCT at 5 to 7 days. Twenty-five patients met the criteria for inclusion and were subsequently divided into 2 groups: those with recanalization at 24 hours (n=16) and those without (n=9). Penumbra was operationally defined as tissue with an admission CBF <25 mL x 100 g(-1) x min(-1) that was not infarcted on the 5- to 7-day NCCT. Logistic regression was applied to differentiate between infarct and penumbra data points. RESULTS For recanalized patients, CBF was significantly lower (P<0.05) for infarct (13.3+/-3.75 mL x 100 g(-1) x min(-1)) than penumbra (25.0+/-3.82 mL x 100 g(-1) x min(-1)). CBV in the penumbra (2.15+/-0.43 mL x 100 g(-1)) was significantly higher than contralateral (1.78+/-0.30 mL x 100 g(-1)) and infarcted tissue (1.12+/-0.37 mL x 100 g(-1)). Logistic regression using an interaction term (CBFxCBV) resulted in sensitivity, specificity, and accuracy of 97.0%, 97.2%, and 97.1%, respectively. The interaction term resulted in a significantly better (P<0.05) fit than CBF or CBV alone, suggesting that the CBV threshold for infarction varies with CBF. For patients without recanalization, CBF and CBV for infarcted regions were 15.1+/-5.67 mL x 100 g(-1) x min(-1) and 1.17+/-0.41 mL x 100 g(-1), respectively. CONCLUSIONS We have shown in a limited sample of patients that CBF and CBV obtained from CTP can be sensitive and specific for infarction and should be investigated further in a prospective trial to assess their utility for differentiating between infarct and penumbra.
منابع مشابه
Comparison of admission perfusion computed tomography and qualitative diffusion- and perfusion-weighted magnetic resonance imaging in acute stroke patients.
BACKGROUND AND PURPOSE Besides classic criteria, cerebral perfusion imaging could improve patient selection for thrombolytic therapy. The purpose of this study was to compare quantitative perfusion CT imaging and qualitative diffusion- and perfusion-weighted MRI (DWI and PWI) in acute stroke patients at the time of their emergency evaluation. METHODS Thirteen acute stroke patients underwent p...
متن کاملWhole-Brain Perfusion CT Using a Toggling Table - Technique to Predict Final Infarct Volume in Acute Ischemic Stroke CT-Ganzhirnperfusionsmessung durch „Toggling-Table-Technik“ zur Infarktvolumenvorhersage beim akuten ischämischen Schlaganfall
Purpose: To evaluate how accurately final infarct volume in acute ischemic stroke can be predicted with perfusion CT (PCT) using a 64-MDCT unit and the toggling table technique. Materials and Methods: Retrospective analysis of 89 patients with acute ischemic stroke who underwent CCT, CT angiography (CTA) and PCT using the “toggling table” technique within the first three hours after symptom ons...
متن کاملIdentification of infarct core and penumbra in acute stroke using CT perfusion source images.
BACKGROUND AND PURPOSE CT perfusion (CTP) mapping has been reported to be useful in the differentiation of the infarct core and ischemic penumbra. However, the value of the CTP source imaging (CTP-SI) during the arterial and venous phases has not been fully investigated. The purpose of this study was to develop a CTP-SI methodology for acute ischemic stroke and compare its efficacy with cerebra...
متن کامل64-Slice spiral CT perfusion combined with vascular imaging of acute ischemic stroke for assessment of infarct core and penumbra
The aim of this study was to determine the value of computed tomography perfusion (CTP) parameters, including cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT) and time-to-peak (TP), in a clinical study of patients with stroke. Additionally, we determined which parameter or combination of parameters are reliable in detecting the presence of an infarct and penumbra....
متن کاملComputed tomography perfusion measurements for definition of lesions in early acute stroke
Background: Perfusion computed tomography (CT) is an evolving technique in the diagnosis of acute stroke. After complex deconvolution algorithms, perfusion color maps-cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT)— are produced, they give visual confirmation of perfusion deficit in ischemic area, but some discrepancies exist regarding this technique in relia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Stroke
دوره 37 7 شماره
صفحات -
تاریخ انتشار 2006